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Abstract. We investigate corrections to the handbag approach for wide-angle Compton scattering off
protons at moderately large momentum transfer: the photon–parton subprocess is calculated to next-
to-leading order in αs and contributions from the generalized parton distribution E are taken into account.
Photon and proton helicity flip amplitudes are non-zero due to these corrections, which leads to a wealth
of polarization phenomena in Compton scattering. Thus, for instance, the incoming photon asymmetry or
the transverse polarization of the proton is non-zero, although small.

1 Introduction

Probing the proton with high-energy photons provides in-
formation about its inner structure. The most famous pro-
cess used for such investigations is deep inelastic lepton–
proton scattering. From a dynamical point of view this
process represents forward (virtual) Compton scattering
and is described by the handbag diagram shown in Fig. 1.
Recent theoretical developments revealed that the physics
of the handbag diagram is also of importance for deeply
virtual [1,2] and wide-angle [3,4] Compton scattering off
protons. Both these processes refer to complementary
kinematical situations. The region of deeply virtual scat-
tering is characterized by small momentum transfer from
the initial to the final proton and a large photon virtual-
ity, while in the wide-angle region the situation is reversed.
As has been argued in [3,4] the wide-angle Compton am-
plitudes approximately factorize into hard photon–parton
subprocess amplitudes and proton matrix elements repre-
senting the soft emission and reabsorption of a parton by
the proton. These matrix elements are moments of gener-
alized parton distributions (GPDs) [1,5,6] and can be re-
garded as new form factors of the protons. The GPDs also
encode the soft physics information required to describe
deeply virtual Compton scattering. That the handbag di-
agram, i.e. elastic scattering of photons from quarks, con-
trols Compton scattering has been conjectured by Bjorken
and Paschos [7] and by Scott [8] a long time ago as we note
in passing.

It is however to be emphasized that the handbag con-
tribution to wide-angle Compton scattering formally rep-
resents only a power correction to the leading-twist per-
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turbative contribution [9]. This contribution for which all
partons the proton is composed of participate in the hard
scattering, and not only a single one as in the handbag
model, has been calculated several times [10] with par-
tially contradicting results. According to the most recent
study [11], it seems difficult to account for the wide-angle
data on Compton scattering [12]. This result as well as
similar observations made with the pion and the proton
electromagnetic form factors [13,14] have lead to the as-
sumption of a dominant handbag contribution for momen-
tum transfers below about 100GeV2. There is a third con-
tribution to Compton scattering. It has the topology of
the so-called cat’s ears graphs where the hard subprocess
involves two partons. It is reasonable to assume that the
magnitude of this contribution is intermediate between
the handbag and the perturbative one and that it can be
neglected in the kinematical range of interest.

In this work we are going to investigate perturbative
and non-perturbative QCD corrections to the handbag
contribution for wide-angle Compton scattering. We cal-
culate the next-to-leading order (NLO) corrections to the
subprocess and, motivated by the surprising result for the
Pauli form factor found at JLab [15], we study the bearing
of the form factor RT , neglected in [3,4], on the predic-
tions. We begin with a sketch of the handbag approach
and the calculation of the NLO corrections (Sect. 2). A
brief discussion of the model used for the form factors,
or the underlying GPDs, follows (Sect. 3). Section 4 is de-
voted to a comprehensive discussion of the predictions for
a large set of observables and their comparison with the
results presented in [4] and with those obtained with other
theoretical concepts. This may facilitate the interpretation
of future experimental data on wide-angle Compton scat-
tering that might be obtained at Spring-8, JLab or at an
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Fig. 1. The handbag diagram for Compton scattering off pro-
tons. The horizontal lines represent any number of spectator
partons

ELFE-type accelerator. Finally we discuss the possibility
of measuring the Compton form factors (Sect. 5) and close
with a summary (Sect. 6).

2 The handbag contribution

Let us sketch the calculation of the handbag contribution
to wide-angle Compton scattering; for details we refer to
[4]. For Mandelstam variables, s, t and u, that are large on
a hadronic scale, Λ2, of the order of 1GeV2, the Compton
amplitudes are calculated from the handbag graph dis-
played in Fig. 1. Its contribution is defined through the
assumption that the soft hadron wave functions occurring
in the Fock decomposition of the proton, are dominated by
parton virtualities in the range |k2

i | � Λ2 and by intrinsic
transverse parton momenta k⊥i that satisfy k⊥2

i /xi � Λ2.
The intrinsic transverse momentum of a parton is defined
in a frame where its parent’s hadron transverse momen-
tum is zero; xi = k+

i /p+ is the usual light-cone momen-
tum fraction. It is of advantage to choose a symmetric
frame of reference where the plus and minus light-cone
components of the momentum transfer, ∆, are zero (for
the definition of the kinematics see Fig. 1). This implies
t = −∆2

⊥ as well as a vanishing skewedness parameter,
ξ = (p − p′)+/(p + p′)+. One can then show that the
photon–parton scattering is hard and the momenta kj ,
k′

j of the active partons, i.e. those to which the photons
couple (see Fig. 1), are approximately on-shell, collinear
with their parent hadrons and with momentum fractions
xj = x′

j = 1. This leads to an approximate equality of
the Mandelstam variables in the photon–parton subpro-
cess and in the overall photon–proton reaction up to cor-
rections of order Λ2/t.

In view of this the helicity amplitudes Mµ′ν′,µν of
wide-angle Compton scattering in the symmetric frame
are given by

Mµ′+,µ+(s, t) (1)

= 2παem

[
Hµ′+,µ+(s, t)(RV (t) +RA(t))

+Hµ′−,µ−(s, t)(RV (t)−RA(t))
]
,

Mµ′−,µ+(s, t)

= −παem

√−t

m
[Hµ′+,µ+(s, t) +Hµ′−,µ−(s, t)]RT (t).

Here, µ (ν) and µ′ (ν′) denote the light-cone helicities
[16,17] of the incoming and outgoing photon (proton), re-
spectively. m is the proton mass. For the sake of legibil-
ity explicit helicities are labeled only by their signs. We
emphasize that the proton helicity flip amplitudes have
been neglected in [3,4]. Below we will discuss under which
circumstances this is reasonable and when not. It is also
important to realize that the amplitudes (1) are subject
to uncontrolled corrections of order Λ2/t arising from the
approximations necessary to achieve the factorization of
the handbag contribution as has been shown in [4].

The soft proton matrix elements, Ri (i = V,A, T ),
appearing in (1) represent new types of proton form fac-
tors. They are defined as 1/x-moments of GPDs at zero
skewedness. For active quarks of flavor a (u, d,...) they
read

Ra
V (t) =

∫ 1

−1

dx̄
x̄

Ha(x̄, 0; t),

Ra
A(t) =

∫ 1

−1

dx̄
x̄
sign(x̄)H̃a(x̄, 0; t),

Ra
T (t) =

∫ 1

−1

dx̄
x̄

Ea(x̄, 0; t), (2)

where x̄ = (kj + k′
j)

+/(p + p′)+. The full form factors in
(1), specific to Compton scattering, are given by

Ri(t) =
∑

a

e2
aR

a
i (t), (3)

ea being the charge of quark a in units of the positron
charge. In principle there is a fourth form factor, related
to the GPD Ẽa, but it does not contribute to the Compton
amplitudes in the symmetric frame. The form factors Ra

i
also appear in wide-angle photo- and electroproduction of
mesons [18].

Last but not least, the Hµ′λ′,µλ in (1) denote the γq →
γq subprocess amplitudes where the helicities λ and λ′ re-
fer to the quarks now. To leading order (LO) these am-
plitudes are to be calculated from the Feynman graphs
shown in Fig. 2a. One finds

HLO
++,++ = 2

√
s

−u
, HLO

−+,−+ = 2

√−u

s
, HLO

−+,++ = 0.

(4)
Since the quarks are taken as massless there is no quark
helicity flip, Hµ′λ,µ−λ = 0 to any order of αs. Other he-
licity amplitudes are obtained from those given in (4) by
parity and time reversal invariance:

H−µ′−λ′,−µ−λ = Hµλ,µ′λ′ = (−1)µ−λ−µ′+λ′Hµ′λ′,µλ. (5)

Analogous relations hold for theMµ′ν′,µν .
The NLO corrections to the γq → γq are to be cal-

culated from the Feynman graphs b–e depicted in Fig. 2.
We work in Feynman gauge and use dimensional regular-
ization (n = 4 + ε). As expected for the process at hand,
the ultraviolet divergencies of the individual graphs cancel
in the sum; the NLO amplitudes are ultraviolet safe. On
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Fig. 2a–e. Feynman graphs for Compton scattering off on-
shell quarks. a is the LO graph, the others represent the NLO
QCD corrections. Graphs with self-energy corrections to exter-
nal fermions and those with interchanged interaction points of
the photons are not shown

the other hand, those photon helicity non-flip amplitudes
which are non-zero at LO, are infrared (IR) divergent.
They can be decomposed into an infrared divergent part
∝ HLO and an infrared safe one, HNLO,

HIR
µ+,µ+ =

αs

4π
CFCIR(µF )HLO

µ+,µ+ +HNLO
µ+,µ+, (6)

where CIR embodies the IR singularities. CF (= 4/3) is a
colour factor and µF is a factorization scale of order Λ. As
usual, we interpret the infrared divergent pieces as non-
perturbative physics and absorb them into the soft form
factors. Thus, we write for any of the products of hard
scattering amplitudes and form factors appearing in (1)

Hµ+,µ+(s, t)Ri(t)

=
[
HLO

µ+,µ+

(
1 +

αs

4π
CFCIR(µF )

)
+HNLO

µ+,µ+

]
Ri(t)

=
[HLO

µ+,µ+ +HNLO
µ+,µ+

]
Ri(t, µF ) +O(α2

s ). (7)

The next issue we are concerned with is the exact defi-
nition of CIR. The infrared divergencies in (6) have the
form

−
( −t

4πµ2
F

)ε/2

Γ (1− ε/2)(8/ε2 − 6/ε). (8)

The 1/ε2 term appears as a consequence of overlapping
soft and collinear divergencies. The accompanying dou-
ble logs become large at large −t and have to be re-
summed together with corresponding higher order terms
[αs ln2(−t/µ2

F )]
n in a Sudakov factor [19]. The same prob-

lems occur in the Feynman contribution to the electromag-
netic form factor of the proton which is the analogue of the
handbag contribution to Compton scattering. To NLO the

γ∗ → qq̄ vertex appearing in that calculation provides in-
frared singularities identically to (8) which have to be ab-
sorbed into the soft hadronic matrix element, too. It is, of
course, natural to use the same scheme for the regulariza-
tion of the IR divergencies for both the Feynman and the
handbag contribution. Since customarily the Sudakov fac-
tor is considered as part of the electromagnetic form factor
[19,20], i.e. the latter already includes resummed double
logs, we are forced to identify CIR with the full expression
(8) in order to match with standard phenomenology and,
in particular, with the model we employ in our numeri-
cal studies of Compton scattering. We remark in passing
that the γ∗ → qq̄ vertex also occurs in e+e− → qq̄. In
this case the infrared singularities (8) are compensated by
real gluon emission. The infrared divergencies generated
by the NLO QED corrections to Compton scattering off
electrons cancel against those of double Compton scatter-
ing, γe→ γγe [21]. In deeply virtual Compton scattering
only a single IR pole appears [22] but it can be shown that
in the limit xj → 1 an additional singularity emerges [23].

After removal of the IR divergencies the NLO ampli-
tudes read

HNLO
++,++ =

αs

2π
CF

{
π2

3
− 7 + 2t− s

s
ln

t

u

+ ln2 −t

s
+

t2

s2

(
ln2 t

u
+ π2

)
− 2iπ ln −t

s

} √
s

−u
,

HNLO
−+,−+ =

αs

2π
CF

{
4
3
π2 − 7 + 2t− u

u
ln
−t

s
+ ln2 t

u

+
t2

u2 ln
2 −t

s
− 2iπ

(
2t− u

2u
+

t2

u2 ln
−t

s

)} √−u

s
,

HNLO
−+,++ = −αs

2π
CF

{√
s

−u
+

√−u

s

}
. (9)

Since in wide-angle Compton scattering −t and −u are of
order s there are no large logs in the NLO amplitudes. We
also see that the NLO amplitudes possess both non-zero
imaginary parts and non-zero photon helicity flips.

At the one-loop level, there is a complication which we
have to discuss next, namely gluons have to be considered
as active partons as well. The treatment of the gluonic con-
tributions to wide-angle Compton scattering is analogous
to that one utilized in wide-angle photo- and electropro-
duction of vector mesons [18]. The gluonic contributions
factorize into the parton subprocess γg → γg and gluonic
form factors. In contrast to the case of quarks, the par-
tonic amplitudes now allow parton, i.e. gluon helicity flips
to occur.

For gluon helicity non-flip the gluonic contributions
have a representation analogous to (1). The corresponding
form factors read

Rg
V (t) =

∑
a

e2
a

∫ 1

0

dx̄
x̄2 Hg(x̄, 0; t), (10)

and analogously for the other ones. The range of inte-
gration is restricted to the interval [0, 1] since gluons and
antigluons are the same particles. The additional factor
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(a) (b) (c)

Fig. 3a–c. Sample Feynman graphs for photon–gluon scat-
tering

1/x̄ is conventional; it appears as a consequence of the
definition of the gluon GPDs [1,5,6] which implies the
forward limits

x̄g(x̄) = Hg(x̄, 0; 0), x̄∆g(x̄) = H̃g(x̄, 0; 0). (11)

With regard to this definition we still call (10) a 1/x̄-
moment. The sum in (10) runs over the flavors u, d, s
which suffices for the range of energy we are interested
in. For gluon helicity flip we do not present details here
because these contributions are neglected in our numerical
studies as those proportional to the form factors Rg

A and
Rg

T . This is justified since, as we will argue in Sect. 3,
the gluon form factors are expected to be smaller than
the corresponding quark ones at large −t and since the
gluonic contributions only appear to order αs. Hence, we
only consider the contribution ∝ Rg

V . It reads

2παem

[
Hg

µ′+,µ+(s, t) +Hg
µ′−,µ−(s, t)

]
Rg

V (t), (12)

and is to be added to the proton helicity non-flip ampli-
tudesMµ′+,µ+ in (1).

The photon–gluon amplitudes are to be calculated
from the three graphs shown in Fig. 3. There are three
further graphs contributing to order αs which however re-
duce to the first three ones by reversing the fermion num-
ber flow. After some algebra we find for the gluon helicity
non-flip amplitudes

Hg
++,++ =

αs

π

{
t2 + u2

2s2

(
ln2 t

u
+ π2

)
+

t− u

s
ln

t

u
+ 1

}
,

Hg
−+,−+ =

αs

π

{
s2 + t2

2u2 ln2 −t

s
+

t− s

u
ln
−t

s
+ 1

− iπ
(

t− s

u
+

s2 + t2

u2 ln
−t

s

)}
,

Hg
−+,++ = −αs

π
. (13)

Except for a different normalization these amplitudes
agree with those given in [24]. In this recent paper the
gluon helicity flip amplitudes can be found, too.

3 Modeling the GPDs

In order to predict wide-angle Compton scattering a model
for the GPDs at large −t and zero skewedness is required.

In [25] (see also [4,26]) it has been shown on the basis of
light-cone quantization that the GPDs possess a represen-
tation in terms of light-cone wave function overlaps. This
representation allows the construction of a simple model
for the GPDs by parameterizing the transverse momen-
tum dependence of a N -particle wave function as

ΨN ∝ exp
[
−a2

N

N∑
i=1

k2
⊥i/xi

]
, (14)

which is in line with the central assumption of the hand-
bag approach of restricted k2

⊥i/xi, necessary to achieve
factorization of the amplitudes into soft and hard parts.
Without explicit specification of the x-dependences of the
wave functions one can then calculate the ξ = 0 GPDs
from the overlap representation if a common transverse
size parameter a = aN is used. This ansatz leads to

Ha(x̄, 0; t) = exp
[
a2t

1− x̄

2x̄

]
qa(x̄),

H̃a(x̄, 0; t) = exp
[
a2t

1− x̄

2x̄

]
∆qa(x̄), (15)

where qa and ∆qa are the ordinary unpolarized and polar-
ized parton distributions for a quark of flavor a, respec-
tively. An analogous representation holds for the gluon
GPDs with the replacement of qa and ∆qa by x̄g and
x̄∆g, respectively.

Taking the parton distributions from one of the current
analyses of deep inelastic lepton–nucleon scattering, e.g.
from [27], and using a value of 	 1GeV−1 for the trans-
verse size parameter a, one obtains acceptable results for
the unpolarized Compton cross section as well as for the
proton and neutron electromagnetic Dirac form factors,
F1, which represent x0-moments of Ha. The model GPDs
(15) have been improved somewhat by treating the low-
est three proton Fock states explicitly with specified wave
functions [4,14] whose parameters are fitted to data for the
electromagnetic form factors and to the parton distribu-
tions given in [27]. Due to this procedure the form factors
effectively include the Sudakov factors and do practically
not depend on the factorization scale. Since we are merely
interested in a restricted range of momentum transfer we
ignore the evolution of the GPDs as has been done in pre-
vious work [3,4,18]. As shown by Vogt [28], the evolution
can be incorporated in the overlap model for the GPDs
at the expense of a scale dependent transverse size pa-
rameter. Numerical results for the form factors, obtained
from the improved version of the overlap model [4,18], are
displayed in Fig. 4. We will employ these results in our nu-
merical studies.

Let us now discuss the form factor RT . The overlap
representation of the underlying GPD Ea involves com-
ponents of the proton wave functions where the parton
helicities do not add up to the helicity of the proton. In
other words, parton configurations with non-zero orbital
angular momentum contribute to it. That Ea involves par-
ton orbital angular momentum in an essential way is also
reflected in Ji’s angular momentum sum rule [29]. Whereas
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Fig. 4. The Compton form factors RV , RA and Rg
V , scaled

by t2, versus −t

RV and F1 represent different moments of the GPD Ha,
RT and the Pauli form factor, F2, correspond to Ea. Since,
at large −t, the integrals (2) for RV and RT as well as
those for their electromagnetic counter parts, F1 and F2,
are dominated by the region x̄ → 1 where the valence u-
quarks provide most of the contributions, there is little dif-
ference between 1/x and x0-moments. This is sufficiently
suggestive to assume that

RT /RV 	 F2/F1. (16)

Inspection of the SLAC data on F2 [30] therefore leads one
to the expectationRT /RV ∝ Λ2/t with the consequence of
parameterically suppressed (∝ Λ/(−t)1/2) contributions
from RT to the Compton amplitudes (1). This has been
taken as a motivation in previous LO calculations [3,4] to
neglect RT and consequently proton helicity flip. However,
the recent JLab measurement of F2 [15] seems to indicate
a behavior ∝ Λ/(−t)1/2 for the ratio of form factors rather
than Λ2/t. Provided this behavior will be confirmed, RT

cannot be omitted in the handbag approach; it contributes
to the same order in Λ/(−t)1/2 as the other form factors;
see (1). The results for Compton scattering presented in
[3,4] have to be revised accordingly. Note that, at large
−t, a behavior ∝ Λ/(−t)1/2 for the ratio of form factors
appears quite natural in the overlap representation [25,
31].

In the next section we will present predictions for
Compton scattering using both the scenarios RT omitted
and RT /RV ∝ Λ/(−t)1/2 for comparison. In the latter
case we use a value of 0.37 for the ratio

κ =
√−t

2m
RT

RV
, (17)

as taken from the experimental ratio of F2 and F1 mea-
sured by the JLab Hall A Collaboration [15]. In general κ
is a function of t.

The gluonic form factors play a minor role in our anal-
ysis since they contribute only to order αs. Moreover, they
are smaller than their quark counterparts at large −t since
there, as we argued above, the form factors are controlled

by the region x̄ 	 1 where the valence u-quark domi-
nates. Rg

T , related to Eg, as well as the gluon helicity
flip form factors [17] involve parton orbital angular mo-
mentum. One may therefore anticipate that these form
factors are smaller than Rg

V . R
g
A, being related to ∆g, is

expected to be very small, too [18]. Thus, only the largest
of the gluonic form factors, Rg

V , is taken into account by
us; the other ones are neglected. Numerical results for Rg

V
are taken from [18] and shown in Fig. 4.

4 Observables for
Compton scattering off protons

The derivation of the Compton amplitudes within the
handbag approach naturally requires the use of the light-
cone helicity basis. However, for comparison with exper-
imental and other theoretical results the use of the or-
dinary photon–proton c.m.s. helicity basis is more con-
venient. The c.m.s. helicity amplitudes Φµ′ν′,µν (we keep
the notation of the helicity labels) are obtained from the
light-cone helicity amplitudes (1), defined in the symmet-
ric frame, by the following transform [17]

Φµ′ν′,µν =Mµ′ν′,µν + β/2
[
(−1)1/2−ν′Mµ′−ν′,µν

+ (−1)1/2+νMµ′ν′,µ−ν

]
+O(Λ2/t), (18)

where

β =
2m√

s

√−t√
s+
√−u

. (19)

For convenience we will use below a more generic notation
for the six independent helicity amplitudes [32]

Φ1 = Φ++++, Φ3 = Φ−+++, Φ5 = Φ+−+−,

Φ2 = Φ−−++, Φ4 = Φ+−++, Φ6 = Φ−++−. (20)

Inspection of (18) and (1) reveals that

Φ2 = −Φ6 +O(Λ2/t), (21)

within the handbag approach. The amplitudes Φ2, Φ3 and
Φ6 are of order αs.

In our numerical studies we choose s/2 as the scale
of αs which is the typical virtuality one encounters in
the Feynman graphs shown in Figs. 2 and 3, and evaluate
αs from the two-loop expression for nf = 4 flavors and
Λ

(4)
MS

= 305MeV [33]. We emphasize that our predictions,
termed scenario A in the following, include corrections of
order αs and β (∝ Λ/(−t)1/2) as well as contributions
from RT (with κ = 0.37). Terms of order α2

s and β2 are
neglected throughout. Thus, for instance, a square of a
helicity amplitude is evaluated as

|H|2 = |HLO|2 + 2HLOReHNLO. (22)

For comparison we also show the results given in [4] where
only the LO subprocess amplitudes are taken into account
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Fig. 5. Predictions from scenario A for the Compton cross sec-
tion, scaled by s6, versus cos θ for various photon energies, E,
in the laboratory frame. θ is the c.m.s. scattering angle. Data
taken from [12]; they are only shown for −t, −u ≥ 2.5GeV2 as
a minimum condition for our approximations to be applicable

and RT as well as the order Λ/(−t)1/2 corrections are
omitted (scenario B).

The simplest but most important observable is the un-
polarized cross section. In terms of the c.m.s. helicity am-
plitudes and within the handbag approach it reads

dσ
dt

=
1

32π(s−m2)2

× [|Φ1|2 + |Φ2|2 + 2|Φ3|2 + 2|Φ4|2 + |Φ5|2 + |Φ6|2
]

=
πα2

em

4(s−m2)2
{
R2

V

[
1 + κ2] |H++++ +H+−+−|2

+ R2
A |H++++ −H+−+−|2 + 2(HLO

++++ +HLO
+−+−)

× Re(Hg
++++ +Hg

+−+−)RV Rg
V

}
, (23)

where we keep the proton mass in the phase space factor.
In Fig. 5 we compare our scenario A results for the Comp-
ton cross section, scaled by s6, with experiment [12]. This
scaling accounts for most of the energy dependence in the
kinematical range of interest. As can be seen from Fig. 4,
the form factors behave as 1/t2 in the momentum trans-
fer range from about 5 to 15GeV2 and, consequently, the
Compton cross section exhibits approximate dimensional
counting rule behavior (∝ s−6) at fixed scattering angle in
a limited range of energy. With increasing −t the form fac-
tors gradually turn into a ∝ t−4 behavior. In that region
of t, likely well above 100GeV2 as is argued in [4], the per-
turbative contribution to Compton scattering will take the
lead. For our form factor model the contribution from RT

results in a constant factor of 1.13 multiplying R2
V while

that from RA is very small in the forward hemisphere and
grows to about 17% for cos θ 	 −0.6. This comes about
because |H+++++H+−+−|2 � |H++++−H+−+−|2 in the
wide-angle region and because, according to the overlap
model, RV > RA. In order to demonstrate the importance
of the NLO corrections we display ratios of the NLO cor-
rections for quarks and gluons and the LO result in Fig. 6.
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Fig. 6. Comparison between the NLO and LO results for the
Compton cross section (contribution from RT not included) at
a photon laboratory energy of 6GeV

As can be seen from this figure the gluonic contribution
amounts to less than 10% in the entire cos θ range of in-
terest. The NLO corrections from quarks are small in the
backward hemisphere while the grow up to about 30% for
cos θ → 1. This happens because s and −t differ greatly
for cos θ → 0.6 and, hence, some of the logs in (9) become
large. cos θ 	 0.6 (−t/s 	 0.2) is the border line for the
applicability of the handbag approach beyond which −t
can hardly be regarded as being of order s.

Given the quality of the data, and the small energies
and low values of −t and −u at which they are avail-
able, the predictions following from the handbag approach
are in fair agreement with experiment. Better data are
clearly needed for a severe test of the handbag approach
and its confrontation with other approaches. Cross sec-
tions of comparable magnitude have been obtained within
a diquark model [34]. This model is a variant of the per-
turbative approach in which diquarks are considered as
quasi-elementary constituents of the proton [35]. In the
leading-twist perturbative approach, on the other hand,
it seems difficult to account for the Compton data even
if strongly asymmetric distribution amplitudes are used
[11]. For more symmetric ones, like the asymptotic one or
the one proposed in [14] the perturbative predictions are
way below experiment [11].

Before we turn to the discussion of spin-dependent ob-
servables a remark concerning the definition of the proton
polarization states is in order. We use the convention ad-
vocated by Bourrely, Leader and Soffer [36] and define the
rotation of a vector through an azimuthal angle ϕ and a
polar angle θ by the matrix R(ϕ, θ, 0). We consider three
different polarization states of the proton – L, S and N –
defined as spin eigenstates of A · σ where σ is the vector
formed of the Pauli matrices and A any of the unit vectors

L(′) =
p(′)

|p(′)| , N = L×L′, S(′) = N ×L(′). (24)

p and p′ denote the three-momenta of the incoming and
outgoing protons, respectively. For Compton scattering a
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Fig. 7. Predictions for the initial state helicity correlation
ALL from scenario A and B at photon laboratory energies of
6GeV and 12GeV

number of polarization observables have been introduced
in order to probe theoretical ideas [32], many more can be
defined in principle. Obviously, only a few of them can be
discussed here.

One set of polarization observables are the two-spin
correlations of which the helicity (L-type) correlations are
of particular interest. The one of the photon and the pro-
ton in the initial state is defined by

ALL
dσ
dt

=
1
2

[
dσ(++)
dt

− dσ(+−)
dt

]
=

1
32π(s−m2)2

[|Φ1|2 + |Φ2|2 − |Φ5|2 − |Φ6|2
]

=
πα2

em

2(s−m2)2
RA

{
RV [1− βκ]

×[|H++++|2 − |H+−+−|2]
+Rg

V (HLO
++++ −HLO

+−+−)

×Re(Hg
++++ +Hg

+−+−)
}
. (25)

Using the model form factors discussed in Sect. 3, we eval-
uate the initial state helicity correlation ALL for scenario
A and compare it in Fig. 7 to that obtained from sce-
nario B [4]. The cos θ dependence of ALL approximately
reflects that of the corresponding helicity correlation for
the photon–parton subprocess, (s2−u2)/(s2+u2), its size
being however diluted by the form factors. We observe
from Fig. 7 that the inclusion of RT and the NLO cor-
rections reduce the values of ALL by about 0.1 to 0.2 as
compared to the results from scenario B. The results from
the handbag approach are opposite in sign to the diquark
model predictions [34]. In the leading-twist perturbative
approach, the results for ALL are also markedly different
from our ones [11]. They are very sensitive to the proton
distribution amplitudes used in the evaluation.

The analogous correlation between the helicities of the
incoming photon and the outgoing proton is defined by

KLL
dσ
dt

=
dσ(++)
dt

− dσ(+−)
dt

(26)

=
1

32π(s−m2)2
[|Φ1|2 − |Φ2|2 − |Φ5|2 + |Φ6|2

]
.

Since Φ2 = −Φ6 in the handbag approach, see (21), we
obtain

KLL = ALL. (27)

The helicity transfer from the incoming to the outgoing
photon reads

DLL
dσ
dt

=
dσ(++)
dt

− dσ(+−)
dt

=
1

32π(s−m2)2
[
|Φ1|2 − |Φ2|2 − 2|Φ3|2 + 2|Φ4|2

+|Φ5|2 − |Φ6|2
]
. (28)

Although the photon helicity is not strictly conserved to
NLO, the helicity transfer is

DLL = 1 +O(α2
s ), (29)

as is evident from a comparison of (23) and (28).
One may also consider sideway proton spin directions;

see ( 24). The correlation between the helicity of the in-
coming photon and the sideway (S-type) polarization of
the incoming proton, parallel (→) or antiparallel (←) to
the S-direction reads

ALS
dσ
dt

=
1
2

[
dσ(+→)

dt
− dσ(− →)

dt

]
=

1
16π(s−m2)2

Re [(Φ1 − Φ5)Φ∗
4 − (Φ2 + Φ6)Φ∗

3]

= − πα2
em

2(s−m2)2
RA

×
{√−t

2m
RT [1 + βκ−1][|H++++|2 − |H+−+−|2]

+ βRg
V (HLO

++++ −HLO
+−+−)

× Re(Hg
++++ +Hg

+−+−)

}
. (30)

Predictions from scenario A are shown in Fig. 8, those ob-
tained from scenario B are zero.ALS turns out to be rather
independent of the photon energies. It is important to note
that ALS is an observable that is very sensitive to the form
factor RT . The corrections from the term βκ−1 are, how-
ever, substantial, in particular for the energies available at
JLab; they cannot be ignored. This, after all, is the reason
why, in contrast to [3,4], we keep these terms. Neither in
the diquark model [34] nor in the leading-twist perturba-
tive approach [11] the observable ALS has been discussed.

The correlation between the helicity of the incoming
photon and the sideway polarization of the outgoing pro-
ton is defined as

KLS
dσ
dt

=
dσ(+→)

dt
− dσ(− →)

dt
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Fig. 8. The correlation ALS at photon laboratory energies of
6GeV and 12GeV

= − 1
16π(s−m2)2

×Re [(Φ1 − Φ5)Φ∗
4 + (Φ2 + Φ6)Φ∗

3] . (31)

Because of Φ2 = −Φ6 it follows that

KLS = −ALS . (32)

Correlations between the helicity of the incoming photon
and the transverse (N -type) polarization of either the in-
coming or the outgoing proton are zero due to parity in-
variance

KLN = ALN = 0. (33)
A single-spin observable for Compton scattering is the

incoming photon asymmetry Σ which is defined as

Σ
dσ
dt

=
1
2

[
dσ⊥
dt
− dσ‖

dt

]
=

1
16π(s−m2)2

Re [(Φ1 + Φ5)Φ∗
3 + (Φ2 − Φ6)Φ∗

4]

=
αsα

2
em

(s−m2)2
(s− u)2

us

×
[
CFR2

V (1 + κ2) + 2
√−us

s− u
RV Rg

V

]
, (34)

where ⊥ and ‖ refer to linear photon polarization normal
to and in the scattering plane, respectively. Obviously, Σ
is zero to LO since there is no photon helicity flip. The
predictions obtained from scenario A are shown in Fig. 9.
Σ is negative and small in absolute value. Approximately,
i.e. if the terms ∝ RA and ∝ Rg

V are neglected in (23) and
(34), it is given by

Σ 	 −αsCF /π. (35)

Hence, the incoming photon asymmetry is nearly indepen-
dent of the Compton form factors. In the diquark model
[34] Σ is negative too but smaller in absolute value. The
leading-twist approach [11], on the other hand, provides
rather large positive values for Σ.

Last but not least we want to comment on the (N -
type) polarization or, as occasionally termed, the single-
spin asymmetry of the incoming proton, that of the out-
going one is analogous. The polarization of the incoming
proton is defined by
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Fig. 9. The incoming photon asymmetry Σ at photon labo-
ratory energies of 6GeV and 12GeV

P
dσ
dt

=
1
2

[
dσ(↑)
dt

− dσ(↓)
dt

]
(36)

=
1

16π(s−m2)2
Im [(Φ1 + Φ5)Φ∗

4 − (Φ2 − Φ6)Φ∗
3] ,

where ↑ and ↓ denote the proton polarization parallel and
antiparallel to the N -direction, respectively. The calcu-
lation of that polarization is a notoriously difficult task
within QCD. Therefore, many experimentally observed
polarization effects, as for instance the polarization in
proton–proton elastic scattering at large momentum trans-
fer [37], remained unexplained. As is well known a non-
zero polarization requires proton helicity flip and phase
differences between the various helicity amplitudes. Both
the necessary ingredients are provided by the handbag ap-
proach, helicity flips from RT and phases from the NLO
corrections and we approximately obtain

P 	 −
√−t

2m
RTRg

V

R2
V

√−us

s− u
Im

(Hg
++++ +Hg

+−+−). (37)

The polarization is of order αs and proportional to the glu-
onic contribution. Numerically it is very small, less than
3% for our model form factors. The predictions for P are to
be taken with a grain of salt. The neglect of gluon helicity
flip as well as α2

s and Λ2/t terms may lead to substantial
corrections. Thus, in a conservative estimate, we can only
say that an experimentally observed polarization larger in
absolute value than, say, 0.1–0.2 near θ = 90◦ would be
difficult to understand in the handbag approach.

5 Measuring the Compton form factors

In the preceding section we presented predicitions for var-
ious observables of wide-angle Compton scattering within
the handbag approach, using a model for the form fac-
tors that is based on light-cone wave function overlaps [4,
25]. On the other hand, a model-independent test of the
handbag approach is provided by a measurement of the
Compton form factors which can be performed through
an analysis of the data for a set of observables to be at
our disposal for several values of s and t. The crucial ques-
tion is whether or not the experimentally determined form
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Table 1. The discrepancies between the approximations (38)
and the full results from scenario A in percent of the full results
at a photon laboratory energy of 6GeV

cos θ ∆(dσ/dt) [%] ∆(KLL) [%] ∆(KLS/KLL) [%]

0.6 -6.2 15.0 1.4
0 -5.6 2.4 2.2

-0.6 -14.8 -11.2 14.6

factors are independent of s within the experimental and
theoretical uncertainties.

At JLab the E99-114 collaboration plans to measure
along with the differential cross section the two-spin cor-
relations KLL and KLS [38]. Provided the quality of this
data will be sufficiently good one may isolate the three
form factors RV (t), RA(t) and RT (t) (or κ(t)) from it.
As a first step towards a model-independent analysis, one
may neglect the gluonic contributions everywhere and the
term ∝ RA in the cross section which, as we discussed
above, is small. To the extent that these simplifications
are justified, one finds

dσ
dt
	 πα2

em

4(s−m2)2
R2

V (t)[1+κ2(t)] |H++++ +H+−+−|2 ,

KLL 	 2
RA(t)
RV (t)

1− βκ(t)
1 + κ2(t)

|H++++|2 − |H+−+−|2
|H++++ +H+−+−|2

,

KLS

KLL
	 κ(t)

1 + βκ−1(t)
1− βκ(t)

. (38)

The cross section is essentially controlled by the form fac-
tor RV with, probably, only a small correction from κ.
KLL measures the ratio RA/RV with, however, substan-
tial corrections from κ. The ratio KLS/KLL determines
the Compton analogue RT /RV (∝ κ) to the ratio of the
electromagnetic form factors F2 and F1. For large energies
and scattering angles near 90◦, the β terms are negligibly
small and the analysis is markedly simplified. In Table 1 we
present an assessment of the quality of the approximations
(38). The discrepancies between (38) and the full results
from scenario A do not exceed 15% at a photon energy
of 6GeV. The use of the LO amplitudes in (38) instead
of the NLO ones enlarges the discrepancies, in particular
in the forward hemisphere; see Fig. 6. The form factors
measured through (38) may be improved iteratively.

6 Summary

As a complement to [4] we have calculated the NLO QCD
corrections to the subprocess amplitudes and include the
form factor RT , related to the GPD E, in the analysis of
wide-angle Compton scattering off protons. We have also
considered the difference between the light-cone helicity
basis in which the handbag graph is calculated, and the
usual c.m.s. helicity one. Predictions for various Compton
observables are given and compared to the leading contri-
bution discussed in [4]. It turns out that these corrections

are non-negligible in general although not unreasonably
large. The NLO corrections and those due to the change
of the helicity basis decrease with increasing energy while
those due to the form factor RT keep their size provided κ
is independent of t. We stress that there are uncontrolled
corrections of order Λ2/t in the handbag approach. For
energies as low as, say, 3GeV these corrections may be
substantial. Our study may be of importance for severe
tests of the handbag approach with future high-quality
data for wide-angle Compton scattering which might be
obtained at Spring-8, JLab or an ELFE-type accelerator.
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